
5

181

Methods and Parameters

From what you have learned about C# programming so far, you should

be able to write straightforward programs consisting of a list of state-

ments, similar to the way programs were created in the 1970s. Program-

ming has come a long way since the 1970s, however; as programs have

become more complex, new paradigms have emerged to manage that

complexity. Procedural or structured programming provides constructs by

which statements are grouped together to form units. Furthermore, with

structured programming, it is possible to pass data to a group of state-

ments and then have data returned once the statements have executed.

2

34

5

6 1

Methods and
Parameters

Calling
a Method

Namespace
Type Name
Scope
Method Name
Parameters
Method Return

Declaring
a Method

The using
Directive

Aliasing
Parameters

Value Parameters
Reference Parameters (ref)

Output Parameters (out)
Parameter Arrays (params)

Method
Overloading

Exception
Handling

Michaelis_Book.indb 181Michaelis_Book.indb 181 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 182 Chapter 5: Methods and Parameters

Besides the basics of calling and defining methods, this chapter covers

some slightly more advanced concepts—namely, recursion, method over-

loading, optional parameters, and named arguments. All method calls dis-

cussed so far and through the end of this chapter are static (a concept that

Chapter 6 explores in detail).

Even as early as the HelloWorld program in Chapter 1, you learned

how to define a method. In that example, you defined the Main() method.

In this chapter, you will learn about method creation in more detail,

including the special C# syntaxes (ref and out) for parameters that pass

variables rather than values to methods. Lastly, we will touch on some

rudimentary error handling.

Calling a Method

B E G I N N E R T O P I C

What Is a Method?
Up to this point, all of the statements in the programs you have written

have appeared together in one grouping called a Main() method. When

programs become any more complex than those we have seen thus far, a

single method implementation quickly becomes difficult to maintain and

complex to read through and understand.

A method is a means of grouping together a sequence of statements

to perform a particular action or compute a particular result. This pro-

vides greater structure and organization for the statements that com-

prise a program. Consider, for example, a Main() method that counts the

lines of source code in a directory. Instead of having one large Main()

method, you can provide a shorter version that allows you to hone in

on the details of each method implementation as necessary. Listing 5.1

shows an example.

Listing 5.1: Grouping Statements into Methods

class LineCount
{
 static void Main()
 {
 int lineCount;
 string files;

Michaelis_Book.indb 182Michaelis_Book.indb 182 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Calling a Method 183

 DisplayHelpText();
 files = GetFiles();
 lineCount = CountLines(files);
 DisplayLineCount(lineCount);
 }
 // ...
}

Instead of placing all of the statements into Main(), the listing breaks

them into groups called methods. The System.Console.WriteLine()

statements that display the help text have been moved to the

DisplayHelpText() method. All of the statements used to determine

which files to count appear in the GetFiles() method. To actually count the

files, the code calls the CountLines() method before displaying the results

using the DisplayLineCount() method. With a quick glance, it is easy to

review the code and gain an overview, because the method name describes

the purpose of the method.

Guidelines
DO give methods names that are verbs or verb phrases.

A method is always associated with a type—usually a class—that pro-

vides a means of grouping related methods together.

Methods can receive data via arguments that are supplied for their

parameters. Parameters are variables used for passing data from the

caller (the code containing the method call) to the invoked method

(Write(), WriteLine(), GetFiles(), CountLines(), and so on). In List-

ing 5.1, files and lineCount are examples of arguments passed to the

CountLines() and DisplayLineCount() methods via their parameters.

Methods can also return data to the caller via a return value (in Listing 5.1,

the GetFiles() method call has a return value that is assigned to files).

To begin, we reexamine System.Console.Write(), System.Console
.WriteLine(), and System.Console.ReadLine() from Chapter 1. This

time we look at them as examples of method calls in general instead of

looking at the specifics of printing and retrieving data from the console.

Listing 5.2 shows each of the three methods in use.

Michaelis_Book.indb 183Michaelis_Book.indb 183 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 184 Chapter 5: Methods and Parameters

Listing 5.2: A Simple Method Call

class HeyYou
{
 static void Main()
 {
 string firstName;
 string lastName;

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");

 firstName = System.Console.ReadLine();
 System.Console.Write("Enter your last name: ");
 lastName = System.Console.ReadLine();
 System.Console.WriteLine(
 $"Your full name is { firstName } { lastName }.");
 }
}

The parts of the method call include the method name, argument list,

and returned value. A fully qualified method name includes a namespace,

type name, and method name; a period separates each part of a fully qual-

ified method name. As we will see, methods are often called with only a

part of their fully qualified name.

Namespaces
Namespaces are a categorization mechanism for grouping all types

related to a particular area of functionality. Namespaces are hierarchical

and can have arbitrarily many levels in the hierarchy, though namespaces

with more than half a dozen levels are rare. Typically the hierarchy begins

with a company name, and then a product name, and then the functional

area. For example, in Microsoft.Win32.Networking, the outermost

namespace is Microsoft, which contains an inner namespace Win32, which

in turn contains an even more deeply nested Networking namespace.

Namespaces are primarily used to organize types by area of func-

tionality so that they can be more easily found and understood. How-

ever, they can also be used to avoid type name collisions. For example,

the compiler can distinguish between two types with the name

Button as long as each type has a different namespace. Thus you

can disambiguate types System.Web.UI.WebControls.Button and

System.Windows.Controls.Button.

Michaelis_Book.indb 184Michaelis_Book.indb 184 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Calling a Method 185

In Listing 5.2, the Console type is found within the System name-

space. The System namespace contains the types that enable the program-

mer to perform many fundamental programming activities. Almost all C#

programs use types within the System namespace. Table 5.1 provides a

listing of other common namespaces.

Table 5.1: Common Namespaces

Namespace Description

System Contains the fundamental types and
types for conversion between types,
mathematics, program invocation, and
environment management.

System.Collections.Generics Contains strongly typed collections that
use generics.

System.Data Contains types used for working with
databases.

System.Drawing Contains types for drawing to the dis-
play device and working with images.

System.IO Contains types for working with direc-
tories and manipulating, loading, and
saving files.

System.Linq Contains classes and interfaces for
querying data in collections using a
Language Integrated Query.

System.Text Contains types for working with strings
and various text encodings, and for con-
verting between those encodings.

System.Text.RegularExpressions Contains types for working with regular
expressions.

System.Threading Contains types for multithreaded
programming.

System.Threading.Tasks Contains types for task-based
asynchrony.

System.Web Contains types that enable browser-to-
server communication, generally over
HTTP. The functionality within this
namespace is used to support ASP.NET.

Begin 4.0

continues

Michaelis_Book.indb 185Michaelis_Book.indb 185 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 186 Chapter 5: Methods and Parameters

Namespace Description

System.Windows Contains types for creating rich user
interfaces starting with .NET 3.0 using a
UI technology called Windows Presen-
tation Framework (WPF) that leverages
Extensible Application Markup Lan-
guage (XAML) for declarative design of
the UI.

System.Xml Contains standards-based support for
XML processing.

It is not always necessary to provide the namespace when calling a

method. For example, if the call expression appears in a type in the same

namespace as the called method, the compiler can infer the namespace to

be the namespace that contains the type. Later in this chapter, you will see

how the using directive eliminates the need for a namespace qualifier as well.

Guidelines
DO use PascalCasing for namespace names.
CONSIDER organizing the directory hierarchy for source code files to
match the namespace hierarchy.

Type Name
Calls to static methods require the type name qualifier as long as the target

method is not within the same type.1 (As discussed later in the chapter, a

using static directive allows you to omit the type name.) For example,

a call expression of Console.WriteLine() found in the method

HelloWorld.Main() requires the type, Console, to be stated. However,

just as with the namespace, C# allows the omission of the type name from

a method call whenever the method is a member of the type containing

the call expression. (Examples of method calls such as this appear in List-

ing 5.4.) The type name is unnecessary in such cases because the compiler

 1. Or base class.

End 4.0

Table 5.1: Common Namespaces (continued)

Michaelis_Book.indb 186Michaelis_Book.indb 186 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Calling a Method 187

infers the type from the location of the call. If the compiler can make no

such inference, the name must be provided as part of the method call.

At their core, types are a means of grouping together methods and their

associated data. For example, Console is the type that contains the Write(),

WriteLine(), and ReadLine() methods (among others). All of these methods

are in the same group because they belong to the Console type.

Scope
In the previous chapter, you learned that the scope of a program element is

the region of text in which it can be referred to by its unqualified name. A

call that appears inside a type declaration to a method declared in that type

does not require the type qualifier because the method is in scope throughout

its containing type. Similarly, a type is in scope throughout the namespace

that declares it; therefore, a method call that appears in a type in a particular

namespace need not specify that namespace in the method call name.

Method Name
Every method call contains a method name, which might or might not be

qualified with a namespace and type name, as we have discussed. After

the method name comes the argument list; the argument list is a parenthe-

sized, comma-separated list of the values that correspond to the parameters

of the method.

Parameters and Arguments
A method can take any number of parameters, and each parameter is of

a specific data type. The values that the caller supplies for parameters are

called the arguments; every argument must correspond to a particular

parameter. For example, the following method call has three arguments:

System.IO.File.Copy(
 oldFileName, newFileName, false)

The method is found on the class File, which is located in the namespace

System.IO. It is declared to have three parameters, with the first and

second being of type string and the third being of type bool. In this exam-

ple, we use variables (oldFileName and newFileName) of type string for

the old and new filenames, and then specify false to indicate that the

copy should fail if the new filename already exists.

Michaelis_Book.indb 187Michaelis_Book.indb 187 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 188 Chapter 5: Methods and Parameters

Method Return Values
In contrast to System.Console.WriteLine(), the method call System
.Console.ReadLine() in Listing 5.2 does not have any arguments because

the method is declared to take no parameters. However, this method happens

to have a method return value. The method return value is a means

of transferring results from a called method back to the caller. Because

System.Console.ReadLine() has a return value, it is possible to assign

the return value to the variable firstName. In addition, it is possible to

pass this method return value itself as an argument to another method

call, as shown in Listing 5.3.

Listing 5.3: Passing a Method Return Value as an Argument to Another Method Call

class Program
{
 static void Main()
 {
 System.Console.Write("Enter your first name: ");
 System.Console.WriteLine("Hello {0}!",
 System.Console.ReadLine());
 }
}

Instead of assigning the returned value to a variable and then using that

variable as an argument to the call to System.Console.WriteLine(), List-

ing 5.3 calls the System.Console.ReadLine() method within the call to

System.Console.WriteLine(). At execution time, the System.Console
.ReadLine() method executes first, and its return value is passed directly

into the System.Console.WriteLine() method, rather than into a variable.

Not all methods return data. Both versions of System.Console.Write()

and System.Console.WriteLine() are examples of such methods. As

you will see shortly, these methods specify a return type of void, just as

the HelloWorld declaration of Main returned void.

Statement versus Method Call
Listing 5.3 provides a demonstration of the difference between

a statement and a method call. Although System.Console
.WriteLine("Hello {0}!", System.Console.ReadLine()); is a single

statement, it contains two method calls. A statement often contains one

or more expressions, and in this example, two of those expressions are

method calls. Therefore, method calls form parts of statements.

Michaelis_Book.indb 188Michaelis_Book.indb 188 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Declaring a Method 189

Although coding multiple method calls in a single statement often

reduces the amount of code, it does not necessarily increase the readability

and seldom offers a significant performance advantage. Developers should

favor readability over brevity.

NOTE
In general, developers should favor readability over brevity. Readability

is critical to writing code that is self-documenting and therefore more

maintainable over time.

Declaring a Method
This section expands on the explanation of declaring a method to include

parameters or a return type. Listing 5.4 contains examples of these concepts,

and Output 5.1 shows the results.

Listing 5.4: Declaring a Method

class IntroducingMethods
{
 public static void Main()
 {
 string firstName;
 string lastName;
 string fullName;
 string initials;

 System.Console.WriteLine("Hey you!");

 firstName = GetUserInput("Enter your first name: ");
 lastName = GetUserInput("Enter your last name: ");

 fullName = GetFullName(firstName, lastName);
 initials = GetInitials(firstName, lastName);
 DisplayGreeting(fullName, initials);
 }

 static string GetUserInput(string prompt)
 {
 System.Console.Write(prompt);
 return System.Console.ReadLine();
 }

 stat ic string GetFullName(// C# 6.0 expression-bodied method
 string firstName, string lastName) =>
 $"{ firstName } { lastName }";

Begin 6.0

Michaelis_Book.indb 189Michaelis_Book.indb 189 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 190 Chapter 5: Methods and Parameters

 static void DisplayGreeting(string fullName, string initials)
 {
 System.Console.WriteLine(
 $"Hello { fullName }! Your initials are { initials }");
 return;
 }

 static string GetInitials(string firstName, string lastName)
 {
 return $"{ firstName[0] }. { lastName[0] }.";
 }
}

Output 5.1

Hey you!
Enter your first name: InigoInigo
Enter your last name: MontoyaMontoya
Your full name is Inigo Montoya.

Five methods are declared in Listing 5.4. From Main() the code calls

GetUserInput(), followed by a call to GetFullName() and GetInitials().

All of the last three methods return a value and take arguments. In addi-

tion, the listing calls DisplayGreeting(), which doesn’t return any data.

No method in C# can exist outside the confines of an enclosing type; in this

case, the enclosing type is the IntroducingMethods class. Even the Main

method examined in Chapter 1 must be within a type.

Language Contrast: C++/Visual Basic—Global Methods
C# provides no global method support; everything must appear within a type declara-
tion. This is why the Main() method was marked as static—the C# equivalent of a C++
global and Visual Basic “shared” method.

B E G I N N E R T O P I C

Refactoring into Methods
Moving a set of statements into a method instead of leaving them inline

within a larger method is a form of refactoring. Refactoring reduces code

duplication, because you can call the method from multiple places instead

of duplicating the code. Refactoring also increases code readability. As part

End 6.0

Michaelis_Book.indb 190Michaelis_Book.indb 190 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Declaring a Method 191

of the coding process, it is a best practice to continually review your code

and look for opportunities to refactor. This involves looking for blocks of

code that are difficult to understand at a glance and moving them into a

method with a name that clearly defines the code’s behavior. This practice

is often preferred over commenting a block of code, because the method

name serves to describe what the implementation does.

For example, the Main() method that is shown in Listing 5.4 results in

the same behavior as does the Main() method that is shown in Listing 1.16

in Chapter 1. Perhaps even more noteworthy is that although both listings

are trivial to follow, Listing 5.4 is easier to grasp at a glance by just view-

ing the Main() method and not worrying about the details of each called

method’s implementation.

In earlier versions of Visual Studio, you can select a group of statements,

right-click on it, and then select the Extract Method refactoring from the

Refactoring section of the context menu to automatically move a group of

statements to a new method. In Visual Studio 2015, the refactorings are

available from the Quick Actions section of the context menu.

Formal Parameter Declaration
Consider the declarations of the DisplayGreeting(), GetFullName(),

and the GetInitials() methods. The text that appears between the

parentheses of a method declaration is the formal parameter list. (As we

will see when we discuss generics, methods may also have a type param-

eter list. When it is clear from context which kind of parameters we are

discussing, we simply refer to them as parameters in a parameter list.) Each

parameter in the parameter list includes the type of the parameter along

with the parameter name. A comma separates each parameter in the list.

Behaviorally, most parameters are virtually identical to local variables, and

the naming convention of parameters follows accordingly. Therefore, parameter

names use camelCase. Also, it is not possible to declare a local variable (a vari-

able declared inside a method) with the same name as a parameter of the con-

taining method, because this would create two local variables of the same name.

Guidelines
DO use camelCasing for parameter names.

Michaelis_Book.indb 191Michaelis_Book.indb 191 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 192 Chapter 5: Methods and Parameters

Method Return Type Declaration
In addition to GetUserInput(), GetFullName(), and the GetInitials()

methods requiring parameters to be specified, each of these methods also

includes a method return type. You can tell that a method returns a value

because a data type appears immediately before the method name in the

method declaration. Each of these method examples specifies a string

return type. Unlike with parameters, of which there can be any number,

only one method return type is allowable.

As with GetUserInput() and GetInitials(), methods with a return

type almost always contain one or more return statements that return con-

trol to the caller. A return statement consists of the return keyword

followed by an expression that computes the value the method is return-

ing. For example, the GetInitials() method’s return statement is

return $"{ firstName[0] }. { lastName[0] }.";. The expression (an

interpolated string in this case) following the return keyword must be

compatible with the stated return type of the method.

If a method has a return type, the block of statements that makes up

the body of the method must have an unreachable end point. That is, there

must be no way for control to “fall off the end” of a method without it

returning a value. Often the easiest way to ensure that this condition is

met is to make the last statement of the method a return statement. How-

ever, return statements can appear in locations other than at the end of

a method implementation. For example, an if or switch statement in a

method implementation could include a return statement within it; see

Listing 5.5 for an example.

Listing 5.5: A return Statement before the End of a Method

class Program
{
 static bool MyMethod()
 {
 string command = ObtainCommand();
 switch(command)
 {
 case "quit":
 return false;
 // ... omitted, other cases
 default:
 return true;
 }
 }
}

Michaelis_Book.indb 192Michaelis_Book.indb 192 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Declaring a Method 193

(Note that a return statement transfers control out of the switch, so no

break statement is required to prevent illegal fall-through in a switch sec-

tion that ends with a return statement.)

In Listing 5.5, the last statement in the method is not a return state-

ment; it is a switch statement. However, the compiler can deduce that

every possible code path through the method results in a return, so that the

end point of the method is not reachable. Thus this method is legal even

though it does not end with a return statement.

If particular code paths include unreachable statements following the

return, the compiler will issue a warning that indicates the additional

statements will never execute.

Though C# allows a method to have multiple return statements, code

is generally more readable and easier to maintain if there is a single exit

location rather than multiple returns sprinkled through various code

paths of the method.

Specifying void as a return type indicates that there is no return value

from the method. As a result, a call to the method may not be assigned

to a variable or used as a parameter type at the call site. A void method

call may be used only as a statement. Furthermore, within the body of the

method the return statement becomes optional, and when it is specified,

there must be no value following the return keyword. For example, the

return of Main() in Listing 5.4 is void, and there is no return statement

within the method. However, DisplayGreeting() includes an (optional)

return statement that is not followed by any returned result.

Although, technically, a method can have only one return type, the

return type could be a tuple. As a result, starting with C# 7.0, it is possible

to return multiple values packaged as a tuple using C# tuple syntax. For

example, you could declare a GetName() method, as shown in Listing 5.6.

Listing 5.6: Returning Multiple Values Using a Tuple

class Program
{
 static string GetUserInput(string prompt)
 {
 System.Console.Write(prompt);
 return System.Console.ReadLine();
 }
 static (string First, string Last) GetName()
 {
 string firstName, lastName;
 firstName = GetUserInput("Enter your first name: ");

Begin 7.0

Michaelis_Book.indb 193Michaelis_Book.indb 193 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 194 Chapter 5: Methods and Parameters

 lastName = GetUserInput("Enter your last name: ");
 return (firstName, lastName);
 }
 static public void Main()
 {
 (string First, string Last) name = GetName();
 System.Console.WriteLine($"Hello { name.First } { name.Last }!");
 }
}

Technically, of course, we are still returning only one data type, a

ValueTuple<string, string>; however, effectively, you can return any

(preferably reasonable) number you like.

Expression Bodied Methods
To support the simplest of method declarations without the formality of a

method body, C# 6.0 introduced expression bodied methods, which are

declared using an expression rather than a full method body. Listing 5.4’s

GetFullName() method provides an example of the expression bodied method:

static string GetFullName(string firstName, string lastName) =>
 $"{ firstName } { lastName }";

In place of the curly brackets typical of a method body, an expression bodied

method uses the “goes to” operator (fully introduced in Chapter 13), for

which the resulting data type must match the return type of the method. In

other words, even though there is no explicit return statement in the expres-

sion bodied method implementation, it is still necessary that the return type

from the expression match the method declaration’s return type.

Expression bodied methods are syntactic shortcuts to the fuller method

body declaration. As such, their use should be limited to the simplest of

method implementations—generally expressible on a single line.

Language Contrast: C++—Header Files
Unlike in C++, C# classes never separate the implementation from the declaration. In C#,
there is no header (.h) file or implementation (.cpp) file. Instead, declaration and imple-
mentation appear together in the same file. (C# does support an advanced feature called
partial methods, in which the method’s defining declaration is separate from its imple-
mentation, but for the purposes of this chapter, we consider only nonpartial methods.)
The lack of separate declaration and implementation in C# removes the requirement to
maintain redundant declaration information in two places found in languages that have
separate header and implementation files, such as C++.

End 7.0

Michaelis_Book.indb 194Michaelis_Book.indb 194 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 The using Directive 195

B E G I N N E R T O P I C

Namespaces
As described earlier, namespaces are an organizational mechanism for

categorizing and grouping together related types. Developers can dis-

cover related types by examining other types within the same namespace

as a familiar type. Additionally, through namespaces, two or more types

may have the same name as long as they are disambiguated by different

namespaces.

The using Directive
Fully qualified namespace names can become quite long and unwieldy. It

is possible, however, to import all the types from one or more namespaces

into a file so that they can be used without full qualification. To achieve

this, the C# programmer includes a using directive, generally at the top of

the file. For example, in Listing 5.7, Console is not prefixed with System.

The namespace may be omitted because of the using System directive

that appears at the top of the listing.

Listing 5.7: using Directive Example

// The using directive imports all types from the
// specified namespace into the entire file
using System;

class HelloWorld
{
 static void Main()
 {
 // No need to qualify Console with System
 // because of the using directive above
 Console.WriteLine("Hello, my name is Inigo Montoya");
 }
}

The results of Listing 5.7 appear in Output 5.2.

Output 5.2

Hello, my name is Inigo Montoya

Michaelis_Book.indb 195Michaelis_Book.indb 195 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 196 Chapter 5: Methods and Parameters

A using directive such as using System does not enable you to

omit System from a type declared within a child namespace of System.

For example, if your code accessed the StringBuilder type from the

System.Text namespace, you would have to either include an additional

using System.Text; directive or fully qualify the type as System.Text
.StringBuilder, not just Text.StringBuilder. In short, a using direc-

tive does not import types from any nested namespaces. Nested name-

spaces, which are identified by the period in the namespace, always need

to be imported explicitly.

Language Contrast: Java—Wildcards in import Directive
Java allows for importing namespaces using a wildcard such as the following:

import javax.swing.*;

In contrast, C# does not support a wildcard using directive but instead requires
each namespace to be imported explicitly.

Language Contrast: Visual Basic .NET—Project Scope
Imports Directive
Unlike C#, Visual Basic .NET supports the ability to specify the using directive equiv-
alent, Imports, for an entire project rather than for just a specific file. In other words,
Visual Basic .NET provides a command-line means of the using directive that will span
an entire compilation.

Frequent use of types within a particular namespace implies that the

addition of a using directive for that namespace is a good idea, instead

of fully qualifying all types within the namespace. Accordingly, almost

all C# files include the using System directive at the top. Throughout the

remainder of this book, code listings often omit the using System direc-

tive. Other namespace directives are included explicitly, however.

One interesting effect of the using System directive is that the string

data type can be identified with varying case: String or string. The for-

mer version relies on the using System directive and the latter uses the

string keyword. Both are valid C# references to the System.String data

Michaelis_Book.indb 196Michaelis_Book.indb 196 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 The using Directive 197

type, and the resultant Common Intermediate Language (CIL) code is

unaffected by which version is chosen.2

A D V A N C E D T O P I C

Nested using Directives
Not only can you have using directives at the top of a file, but you also

can include them at the top of a namespace declaration. For example, if a

new namespace, EssentialCSharp, were declared, it would be possible

to add a using declarative at the top of the namespace declaration (see

Listing 5.8).

Listing 5.8: Specifying the using Directive inside a Namespace Declaration

namespace EssentialCSharp
{
 using System;

 class HelloWorld
 {
 static void Main()
 {
 // No need to qualify Console with System
 // because of the using directive above
 Console.WriteLine("Hello, my name is Inigo Montoya");
 }
 }
}

The results of Listing 5.8 appear in Output 5.3.

Output 5.3

Hello, my name is Inigo Montoya

The difference between placing the using directive at the top of a file

and placing it at the top of a namespace declaration is that the directive is

active only within the namespace declaration. If the code includes a new

 2. I prefer the string keyword, but whichever representation a programmer selects, the

code within a project ideally should be consistent.

Michaelis_Book.indb 197Michaelis_Book.indb 197 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 198 Chapter 5: Methods and Parameters

namespace declaration above or below the EssentialCSharp declaration,

the using System directive within a different namespace would not be

active. Code seldom is written this way, especially given the standard

practice of providing a single type declaration per file.

using static Directive
The using directive allows you to abbreviate a type name by omitting the

namespace portion of the name—such that just the type name can be speci-

fied for any type within the stated namespace. In contrast, the using static

directive allows you to omit both the namespace and the type name

from any member of the stated type. A using static System.Console

directive, for example, allows you to specify WriteLine() rather than

the fully qualified method name of System.Console.WriteLine().

Continuing with this example, we can update Listing 5.2 to leverage the

using static System.Console directive to create Listing 5.9.

Listing 5.9: using static Directive

using static System.Console;

class HeyYou
{
 static void Main()
 {
 string firstName;
 string lastName;

 WriteLine("Hey you!");

 Write("Enter your first name: ");

 firstName = ReadLine();
 Write("Enter your last name: ");
 lastName = ReadLine();
 WriteLine(
 $"Your full name is { firstName } { lastName }.");
 }
}

In this case, there is no loss of readability of the code: WriteLine(),

Write(), and ReadLine() all clearly relate to a console directive. In fact,

one could argue that the resulting code is simpler and therefore clearer

than before.

Begin 6.0

Michaelis_Book.indb 198Michaelis_Book.indb 198 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 The using Directive 199

However, sometimes this is not the case. For example, if your code

uses classes that have overlapping behavior names, such as an Exists()

method on a file and an Exists() method on a directory, then perhaps a

using static directive would reduce clarity when you invoke Exists().

Similarly, if the class you were writing had its own members with overlap-

ping behavior names—for example, Display() and Write()—then perhaps

clarity would be lost to the reader.

This ambiguity would not be allowed by the compiler. If two members

with the same signature were available (through either using static

directives or separately declared members), any invocation of them that

was ambiguous would result in a compile error.

Aliasing
The using directive also allows aliasing a namespace or type. An alias

is an alternative name that you can use within the text to which the

using directive applies. The two most common reasons for aliasing

are to disambiguate two types that have the same name and to abbreviate

a long name. In Listing 5.10, for example, the CountDownTimer alias is

declared as a means of referring to the type System.Timers.Timer. Sim-

ply adding a using System.Timers directive will not sufficiently enable

the code to avoid fully qualifying the Timer type. The reason is that

System.Threading also includes a type called Timer; therefore, using just

Timer within the code will be ambiguous.

Listing 5.10: Declaring a Type Alias

using System;
using System.Threading;
using CountDownTimer = System.Timers.Timer;

class HelloWorld
{
 static void Main()
 {
 CountDownTimer timer;

 // ...
 }
}

Listing 5.10 uses an entirely new name, CountDownTimer, as the alias. It

is possible, however, to specify the alias as Timer, as shown in Listing 5.11.

End 6.0

Michaelis_Book.indb 199Michaelis_Book.indb 199 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 200 Chapter 5: Methods and Parameters

Listing 5.11: Declaring a Type Alias with the Same Name

using System;
using System.Threading;

// Declare alias Timer to refer to System.Timers.Timer to
// avoid code ambiguity with System.Threading.Timer
using Timer = System.Timers.Timer;

class HelloWorld
{
 static void Main()
 {
 Timer timer;

 // ...
 }
}

Because of the alias directive, “Timer” is not an ambiguous reference. Further-

more, to refer to the System.Threading.Timer type, you will have to

either qualify the type or define a different alias.

Returns and Parameters on Main()
So far, declaration of an executable’s Main() method has been the simplest

declaration possible. You have not included any parameters or non-void

return type in your Main() method declarations. However, C# supports the

ability to retrieve the command-line arguments when executing a program,

and it is possible to return a status indicator from the Main() method.

The runtime passes the command-line arguments to Main() using a

single string array parameter. All you need to do to retrieve the parame-

ters is to access the array, as demonstrated in Listing 5.12. The purpose of this

program is to download a file whose location is given by a URL. The first

command-line argument identifies the URL, and the optional second argu-

ment is the filename to which to save the file. The listing begins with a switch

statement that evaluates the number of parameters (args.Length) as follows:

 1. If there are not two parameters, display an error indicating that it is

necessary to provide the URL and filename.

 2. The presence of two arguments indicates the user has provided both

the URL of the resource and the download target filename.

Michaelis_Book.indb 200Michaelis_Book.indb 200 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Returns and Parameters on Main() 201

Listing 5.12: Passing Command-Line Arguments to Main

using System;
using System.Net;

class Program
{
 static int Main(string[] args)
 {
 int result;
 string targetFileName;
 string url;
 switch (args.Length)
 {
 default:
 // Exactly two arguments must be specified; give an error
 Console.WriteLine(
 "ERROR: You must specify the "
 + "URL and the file name");
 targetFileName = null;
 url = null;
 break;
 case 2:
 url = args[0];
 targetFileName = args[1];
 break;
 }

 if (targetFileName != null && url != null)
 {
 WebClient webClient = new WebClient();
 webClient.DownloadFile(url, targetFileName);
 result = 0;
 }
 else
 {
 Console.WriteLine(
 "Usage: Downloader.exe <URL> <TargetFileName>");
 result = 1;
 }
 return result;
 }

}

The results of Listing 5.12 appear in Output 5.4.

Output 5.4

>Downloader.exe
ERROR: You must specify the URL to be downloaded
Downloader.exe <URL> <TargetFileName>

Michaelis_Book.indb 201Michaelis_Book.indb 201 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 202 Chapter 5: Methods and Parameters

If you were successful in calculating the target filename, you would

use it to save the downloaded file. Otherwise, you would display the help

text. The Main() method also returns an int rather than a void. This is

optional for a Main() declaration, but if it is used, the program can return

a status code to a caller (such as a script or a batch file). By convention, a

return other than zero indicates an error.

Although all command-line arguments can be passed to Main() via

an array of strings, sometimes it is convenient to access the arguments

from inside a method other than Main(). The System.Environment
.GetCommandLineArgs() method returns the command-line arguments

array in the same form that Main(string[] args) passes the arguments into

Main().

A D V A N C E D T O P I C

Disambiguate Multiple Main() Methods
If a program includes two classes with Main() methods, it is possible to

specify on the command line which class to use for the Main() declara-

tion. csc.exe includes an /m option to specify the fully qualified class

name of Main().

B E G I N N E R T O P I C

Call Stack and Call Site
As code executes, methods call more methods, which in turn call addi-

tional methods, and so on. In the simple case of Listing 5.4, Main() calls

GetUserInput(), which in turn calls System.Console.ReadLine(),

which in turn calls even more methods internally. Every time a new

method is invoked, the runtime creates an activation frame that contains

information about the arguments passed to the new call, the local variables

of the new call, and information about where control should resume when

the new method returns. The set of calls within calls within calls, and so

on, produces a series of activation frames that is termed the call stack.3

 3. Except for async or iterator methods, which move their activator records onto the heap.

Michaelis_Book.indb 202Michaelis_Book.indb 202 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Advanced Method Parameters 203

As program complexity increases, the call stack generally gets larger and

larger as each method calls another method. As calls complete, however,

the call stack shrinks until another method is invoked. The process of

removing activation frames from the call stack is termed stack unwinding.

Stack unwinding always occurs in the reverse order of the method calls.

When the method completes, execution returns to the call site—that is, the

location from which the method was invoked.

Advanced Method Parameters
So far this chapter’s examples have returned data via the method return

value. This section demonstrates how methods can return data via their

method parameters and how a method may take a variable number of

arguments.

Value Parameters
Arguments to method calls are usually passed by value, which means the

value of the argument expression is copied into the target parameter. For

example, in Listing 5.13, the value of each variable that Main() uses when

calling Combine() will be copied into the parameters of the Combine()

method. Output 5.5 shows the results of this listing.

Listing 5.13: Passing Variables by Value

class Program
{
 static void Main()
 {
 // ...
 string fullName;
 string driveLetter = "C:";
 string folderPath = "Data";
 string fileName = "index.html";

 fullName = Combine(driveLetter, folderPath, fileName);

 Console.WriteLine(fullName);
 // ...
 }

 static string Combine(
 string driveLetter, string folderPath, string fileName)

Michaelis_Book.indb 203Michaelis_Book.indb 203 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 204 Chapter 5: Methods and Parameters

 {
 string path;
 path = string.Format("{1}{0}{2}{0}{3}",
 System.IO.Path.DirectorySeparatorChar,
 driveLetter, folderPath, fileName);
 return path;
 }
}

Output 5.5

C:\Data\index.html

Even if the Combine() method assigns null to driveLetter, folderPath,

and fileName before returning, the corresponding variables within

Main() will maintain their original values because the variables are

copied when calling a method. When the call stack unwinds at the end of

a call, the copied data is thrown away.

B E G I N N E R T O P I C

Matching Caller Variables with Parameter Names
In Listing 5.13, the variable names in the caller exactly matched the param-

eter names in the called method. This matching is provided simply for

readability purposes; whether names match is entirely irrelevant to the

behavior of the method call. The parameters of the called method and the

local variables of the calling method are found in different declaration

spaces and have nothing to do with each other.

A D V A N C E D T O P I C

Reference Types versus Value Types
For the purposes of this section, it is inconsequential whether the param-

eter passed is a value type or a reference type. Rather, the important issue

is whether the called method can write a value into the caller’s original

variable. Since a copy of the caller variable’s value is made, the caller’s vari-

able cannot be reassigned. Nevertheless, it is helpful to understand the dif-

ference between a variable that contains a value type and a variable that

contains a reference type.

Michaelis_Book.indb 204Michaelis_Book.indb 204 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Advanced Method Parameters 205

The value of a reference type variable is, as the name implies, a reference to

the location where the data associated with the object is stored. How the run-

time chooses to represent the value of a reference type variable is an imple-

mentation detail of the runtime; typically it is represented as the address of

the memory location in which the object’s data is stored, but it need not be.

If a reference type variable is passed by value, the reference itself is

copied from the caller to the method parameter. As a result, the target

method cannot update the caller variable’s value but it may update the

data referred to by the reference.

Alternatively, if the method parameter is a value type, the value itself

is copied into the parameter, and changing the parameter in the called

method will not affect the original caller’s variable.

Reference Parameters (ref)
Consider Listing 5.14, which calls a function to swap two values, and Out-

put 5.6, which shows the results.

Listing 5.14: Passing Variables by Reference

class Program
{
 static void Main()
 {
 // ...
 string first = "hello";
 string second = "goodbye";
 Swap(ref first, ref second);

 Console.WriteLine(
 $@"first = ""{ first }"", second = ""{ second }""");
 // ...
 }

 static void Swap(ref string x, ref string y)
 {
 string temp = x;
 x = y;
 y = temp;
 }
}

Output 5.6

first = "goodbye", second = "hello"

Michaelis_Book.indb 205Michaelis_Book.indb 205 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 206 Chapter 5: Methods and Parameters

The values assigned to first and second are successfully switched.

To do this, the variables are passed by reference. The obvious difference

between the call to Swap() and Listing 5.13’s call to Combine() is the

inclusion of the keyword ref in front of the parameter’s data type. This

keyword changes the call such that the variables used as arguments are

passed by reference, so the called method can update the original caller’s

variables with new values.

When the called method specifies a parameter as ref, the caller is

required to supply a variable, not a value, as an argument and to place

ref in front of the variables passed. In so doing, the caller explicitly rec-

ognizes that the target method could reassign the values of the variables

associated with any ref parameters it receives. Furthermore, it is neces-

sary to initialize any local variables passed as ref because target methods

could read data from ref parameters without first assigning them. In List-

ing 5.14, for example, temp is assigned the value of first, assuming that

the variable passed in first was initialized by the caller. Effectively, a ref

parameter is an alias for the variable passed. In other words, it is essen-

tially giving a parameter name to an existing variable, rather than creating

a new variable and copying the value of the argument into it.

Output Parameters (out)
As mentioned earlier, a variable used as a ref parameter must be assigned

before it is passed to the called method, because the called method might

read from the variable. The “swap” example given previously must read

and write from both variables passed to it. However, it is often the case

that a method that takes a reference to a variable intends to write to the

variable but not to read from it. In such cases, clearly it could be safe to

pass an uninitialized local variable by reference.

To achieve this, code needs to decorate parameter types with the key-

word out. This is demonstrated in the TryGetPhoneButton() method in

Listing 5.15, which returns the phone button corresponding to a character.

Listing 5.15: Passing Variables Out Only

class ConvertToPhoneNumber
{
 static int Main(string[] args)
 {
 if(args.Length == 0)

Begin 7.0

Michaelis_Book.indb 206Michaelis_Book.indb 206 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Advanced Method Parameters 207

 {
 Console.WriteLine(
 "ConvertToPhoneNumber.exe <phrase>");
 Console.WriteLine(
 "'_' indicates no standard phone button");
 return 1;
 }
 foreach(string word in args)
 {
 foreach(char character in word)
 {
 if(TryGetPhoneButton(character, out char button))
 {
 Console.Write(button);
 }
 else
 {
 Console.Write('_');
 }
 }
 }
 Console.WriteLine();
 return 0;
 }

 static bool TryGetPhoneButton(char character, out char button)
 {
 bool success = true;
 switch(char.ToLower(character))
 {
 case '1':
 button = '1';
 break;
 case '2': case 'a': case 'b': case 'c':
 button = '2';
 break;

 // ...

 case '-':
 button = '-';
 break;
 default:
 // Set the button to indicate an invalid value
 button = '_';
 success = false;
 break;
 }
 return success;
 }
}

7.0

Michaelis_Book.indb 207Michaelis_Book.indb 207 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 208 Chapter 5: Methods and Parameters

Output 5.7 shows the results of Listing 5.15.

Output 5.7

>ConvertToPhoneNumber.exe CSharpIsGood>ConvertToPhoneNumber.exe CSharpIsGood
274277474663

In this example, the TryGetPhoneButton() method returns true if

it can successfully determine the character’s corresponding phone but-

ton. The function also returns the corresponding button by using the

button parameter, which is decorated with out.

An out parameter is functionally identical to a ref parameter; the only

difference is which requirements the language enforces regarding how

the aliased variable is read from and written to. Whenever a parameter is

marked with out, the compiler checks that the parameter is set for all code

paths within the method that return normally (i.e., the code paths that do

not throw an exception). If, for example, the code does not assign button

a value in some code path, the compiler will issue an error indicating that

the code didn’t initialize button. Listing 5.15 assigns button to the under-

score character because even though it cannot determine the correct phone

button, it is still necessary to assign a value.

A common coding error when working with out parameters is

to forget to declare the out variable before you use it. Starting with

C# 7.0, it is possible to declare the out variable inline when invok-

ing the function. Listing 5.15 uses this feature with the statement

TryGetPhoneButton(character, out char button) without ever declaring

the button variable beforehand. Prior to C# 7.0, it would be necessary

to first declare the button variable and then invoke the function with

TryGetPhoneButton(character, out button).

Another C# 7.0 feature is the ability to discard an out parameter

entirely. If, for example, you simply wanted to know whether a char-

acter was a valid phone button but not actually return the numeric

value, you could discard the button parameter using an underscore:

TryGetPhoneButton(character, out _).

Prior to C# 7.0’s tuple syntax, a developer of a method might declare one

or more out parameters to get around the restriction that a method may

have only one return type; a method that needs to return two values can

do so by returning one value normally, as the return value of the method,

7.0

Michaelis_Book.indb 208Michaelis_Book.indb 208 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Advanced Method Parameters 209

and a second value by writing it into an aliased variable passed as an out

parameter. Although this pattern is both common and legal, there are usu-

ally better ways to achieve that aim. For example, if you are considering

returning two or more values from a method and C# 7.0 is available, it is

likely preferable to use C# 7.0 tuple syntax. Prior to that, consider writing

two methods, one for each value, or still using the System.ValueTuple type

(which would require referencing the System.ValueTuple NuGet package)

but without C# 7.0 syntax.

NOTE
Each and every normal code path must result in the assignment of all

out parameters.

Read-Only Pass by Reference (in)
In C# 7.2, support was added for passing a value type by reference that

was read only. Rather than passing the value type to a function so that it

could be changed, read-only pass by reference was added so that the value

type could be passed by reference so that not only copy of the value type

occurred but, in addition, the invoked method could not change the value

type. In other words, the purpose of the feature is to reduce the memory

copied when passing a value while still identifying it as read only, thus

improving the performance. This syntax is to add an in modifier to the

parameter. For example:

int Method(in int number) { ... }

With the in modifier, any attempts to reassign number (number++, for

example) will result in a compile error indicating that number is read only.

Return by Reference
Another C# 7.0 addition is support for returning a reference to a variable.

Consider, for example, a function that returns the first pixel in an image

that is associated with red-eye, as shown in Listing 5.16.

Listing 5.16: ref Return and ref Local Declaration

// Returning a reference
public static ref byte FindFirstRedEyePixel(byte[] image)

Begin 7.2

End 7.2

7.0

Michaelis_Book.indb 209Michaelis_Book.indb 209 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 210 Chapter 5: Methods and Parameters

{
 // Do fancy image detection perhaps with machine learning
 for (int counter = 0; counter < image.Length; counter++)
 {
 if(image[counter] == (byte)ConsoleColor.Red)
 {
 return ref image[counter];
 }
 }
 throw new InvalidOperationException("No pixels are red.");
}
public static void Main()
{
 byte[] image = new byte[254];
 // Load image
 int index = new Random().Next(0, image.Length - 1);
 image[index] =
 (byte)ConsoleColor.Red;
 System.Console.WriteLine(
 $"image[{index}]={(ConsoleColor)image[index]}");
 // ...

 // Obtain a reference to the first red pixel
 ref byte redPixel = ref FindFirstRedEyePixel(image);
 // Update it to be Black
 redPixel = (byte)ConsoleColor.Black;
 System.Console.WriteLine(
 $"image[{index}]={(ConsoleColor)image[redPixel]}");
}

By returning a reference to the variable, the caller is then able to

update the pixel to a different color, as shown in the highlighted line of List-

ing 5.16. Checking for the update via the array shows that the value is

now black.

There are two important restrictions on return by reference—both due

to object lifetime: Object references shouldn’t be garbage collected while

they’re still referenced, and they shouldn’t consume memory when they

no longer have any references. To enforce these restrictions, you can only

return the following from a reference-returning function:

• References to fields or array elements

• Other reference-returning properties or functions

• References that were passed in as parameters to the by-reference-

returning function

7.0

Michaelis_Book.indb 210Michaelis_Book.indb 210 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Advanced Method Parameters 211

For example, FindFirstRedEyePixel() returns a reference to an item in

the image array, which was a parameter to the function. Similarly, if the

image was stored as a field within the class, you could return the field by

reference:

byte[] _Image;
public ref byte[] Image { get { return ref _Image; } }

Second, ref locals are initialized to refer to a particular variable and can’t

be modified to refer to a different variable.

There are several return-by-reference characteristics of which to be

cognizant:

• If you’re returning a reference, you obviously must return it. This means,

therefore, that in the example in Listing 5.16, even if no red-eye pixel

exists, you still need to return a reference byte. The only workaround

would be to throw an exception. In contrast, the by-reference parame-

ter approach allows you to leave the parameter unchanged and return a

bool indicating success. In many cases, this might be preferable.

• When declaring a reference local variable, initialization is required.

This involves assigning it a ref return from a function or a reference

to a variable:

ref string text; // Error

• Although it’s possible in C# 7.0 to declare a reference local variable,

declaring a field of type ref isn’t allowed:

class Thing { ref string _Text; /* Error */ }

• You can’t declare a by-reference type for an auto-implemented

property:

class Thing { ref string Text { get;set; } /* Error */ }

• Properties that return a reference are allowed:

class Thing { string _Text = "Inigo Montoya";
ref string Text { get { return ref _Text; } } }

• A reference local variable can’t be initialized with a value (such as

null or a constant). It must be assigned from a by-reference-returning

member or a local variable, field, or array element:

ref int number = null; ref int number = 42; // ERROR
End 7.0

Michaelis_Book.indb 211Michaelis_Book.indb 211 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 212 Chapter 5: Methods and Parameters

Parameter Arrays (params)
In the examples so far, the number of arguments that must be passed has

been fixed by the number of parameters declared in the target method

declaration. However, sometimes it is convenient if the number of argu-

ments may vary. Consider the Combine() method from Listing 5.13. In that

method, you passed the drive letter, folder path, and filename. What if the

path had more than one folder, and the caller wanted the method to join

additional folders to form the full path? Perhaps the best option would be to

pass an array of strings for the folders. However, this would make the call-

ing code a little more complex, because it would be necessary to construct

an array to pass as an argument.

To make it easier on the callers of such a method, C# provides a key-

word that enables the number of arguments to vary in the calling code

instead of being set by the target method. Before we discuss the method

declaration, observe the calling code declared within Main(), as shown in

Listing 5.17.

Listing 5.17: Passing a Variable Parameter List

using System;
using System.IO;
class PathEx
{
 static void Main()
 {
 string fullName;

 // ...

 // Call Combine() with four arguments
 fullName = Combine(
 Directory.GetCurrentDirectory(),
 "bin", "config", "index.html");
 Console.WriteLine(fullName);

 // ...

 // Call Combine() with only three arguments
 fullName = Combine(
 Environment.SystemDirectory,
 "Temp", "index.html");
 Console.WriteLine(fullName);

 // ...

Michaelis_Book.indb 212Michaelis_Book.indb 212 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Advanced Method Parameters 213

 // Call Combine() with an array
 fullName = Combine(
 new string[] {
 "C:\\", "Data",
 "HomeDir", "index.html"});
 Console.WriteLine(fullName);
 // ...
 }

 static string Combine(params string[] paths)
 {
 string result = string.Empty;
 foreach (string path in paths)
 {
 result = Path.Combine(result, path);
 }
 return result;
 }
}

Output 5.8 shows the results of Listing 5.17.

Output 5.8

C:\Data\mark\bin\config\index.html
C:\WINDOWS\system32\Temp\index.html
C:\Data\HomeDir\index.html

In the first call to Combine(), four arguments are specified. The second

call contains only three arguments. In the final call, a single argument

is passed using an array. In other words, the Combine() method takes a

variable number of arguments—presented either as any number of string

arguments separated by commas or as a single array of strings. The former

syntax is called the expanded form of the method call, and the latter form is

called the normal form.

To allow invocation using either form, the Combine() method does the

following:

 1. Places params immediately before the last parameter in the method

declaration

 2. Declares the last parameter as an array

With a parameter array declaration, it is possible to access each corre-

sponding argument as a member of the params array. In the Combine()

Michaelis_Book.indb 213Michaelis_Book.indb 213 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 214 Chapter 5: Methods and Parameters

method implementation, you iterate over the elements of the paths array

and call System.IO.Path.Combine(). This method automatically com-

bines the parts of the path, appropriately using the platform-specific

directory-separator character. Note that PathEx.Combine() is identical to

Path.Combine() except that PathEx.Combine() handles a variable num-

ber of parameters rather than simply two.

There are a few notable characteristics of the parameter array:

• The parameter array is not necessarily the only parameter on a method.

• The parameter array must be the last parameter in the method dec-

laration. Since only the last parameter may be a parameter array, a

method cannot have more than one parameter array.

• The caller can specify zero arguments that correspond to the param-

eter array parameter, which will result in an array of zero items being

passed as the parameter array.

• Parameter arrays are type-safe: The arguments given must be com-

patible with the element type of the parameter array.

• The caller can use an explicit array rather than a comma-separated

list of parameters. The resulting CIL code is identical.

• If the target method implementation requires a minimum number

of parameters, those parameters should appear explicitly within the

method declaration, forcing a compile error instead of relying on run-

time error handling if required parameters are missing. For example,

if you have a method that requires one or more integer arguments,

declare the method as int Max(int first, params int[] operands)

rather than as int Max(params int[] operands) so that at least

one value is passed to Max().

Using a parameter array, you can pass a variable number of arguments

of the same type into a method. The section “Method Overloading,” which

appears later in this chapter, discusses a means of supporting a variable

number of arguments that are not necessarily of the same type.

Guidelines
DO use parameter arrays when a method can handle any number—
including zero—of additional arguments.

Michaelis_Book.indb 214Michaelis_Book.indb 214 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Recursion 215

Recursion
Calling a method recursively or implementing the method using

recursion refers to use of a method that calls itself. Recursion is some-

times the simplest way to implement a particular algorithm. Listing 5.18

counts the lines of all the C# source files (*.cs) in a directory and its

subdirectory.

Listing 5.18: Counting the Lines within *.cs Files, Given a Directory

using System.IO;

public static class LineCounter
{
 // Use the first argument as the directory
 // to search, or default to the current directory
 public static void Main(string[] args)
 {
 int totalLineCount = 0;
 string directory;
 if (args.Length > 0)
 {
 directory = args[0];
 }
 else
 {
 directory = Directory.GetCurrentDirectory();
 }
 totalLineCount = DirectoryCountLines(directory);
 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines(string directory)
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, "*.cs"))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

Michaelis_Book.indb 215Michaelis_Book.indb 215 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 216 Chapter 5: Methods and Parameters

 private static int CountLines(string file)
 {
 string line;
 int lineCount = 0;
 FileStream stream =
 new FileStream(file, FileMode.Open);4

 StreamReader reader = new StreamReader(stream);
 line = reader.ReadLine();

 while(line != null)
 {
 if (line.Trim() != "")
 {
 lineCount++;
 }
 line = reader.ReadLine();
 }

 reader.Close(); // Automatically closes the stream
 return lineCount;
 }
}

Output 5.9 shows the results of Listing 5.18.

Output 5.9

104

The program begins by passing the first command-line argument to

DirectoryCountLines() or by using the current directory if no argument

is provided. This method first iterates through all the files in the current

directory and totals the source code lines for each file. After processing each

file in the directory, the code processes each subdirectory by passing the

subdirectory back into the DirectoryCountLines() method, rerunning the

method using the subdirectory. The same process is repeated recursively

through each subdirectory until no more directories remain to process.

Readers unfamiliar with recursion may find it confusing at first.

Regardless, it is often the simplest pattern to code, especially with hierar-

chical type data such as the filesystem. However, although it may be the

most readable approach, it is generally not the fastest implementation. If

 4. This code could be improved with a using statement, a construct that we have avoided

because it has not yet been introduced.

Michaelis_Book.indb 216Michaelis_Book.indb 216 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Method Overloading 217

performance becomes an issue, developers should seek an alternative solu-

tion to a recursive implementation. The choice generally hinges on balanc-

ing readability with performance.

B E G I N N E R T O P I C

Infinite Recursion Error
A common programming error in recursive method implementations

appears in the form of a stack overflow during program execution. This

usually happens because of infinite recursion, in which the method con-

tinually calls back on itself, never reaching a point that triggers the end of

the recursion. It is a good practice for programmers to review any method

that uses recursion and to verify that the recursion calls are finite.

A common pattern for recursion using pseudocode is as follows:

M(x)
{
 if x is trivial
 return the result
 else
 a. Do some work to make the problem smaller
 b. Recursively call M to solve the smaller problem
 c. Compute the result based on a. and b.
 return the result
}

Things go wrong when this pattern is not followed. For example, if you

don’t make the problem smaller or if you don’t handle all possible “smallest”

cases, the recursion never terminates.

Method Overloading
Listing 5.18 called DirectoryCountLines(), which counted the lines of

*.cs files. However, if you want to count code in *.h/*.cpp files or in *.vb

files, DirectoryCountLines() will not work. Instead, you need a method

that takes the file extension but still keeps the existing method definition

so that it handles *.cs files by default.

All methods within a class must have a unique signature, and C#

defines uniqueness by variation in the method name, parameter data types,

or number of parameters. This does not include method return data

types; defining two methods that differ only in their return data types

Michaelis_Book.indb 217Michaelis_Book.indb 217 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 218 Chapter 5: Methods and Parameters

will cause a compile error. This is true even if the return type is two dif-

ferent tuples. Method overloading occurs when a class has two or more

methods with the same name and the parameter count and/or data types

vary between the overloaded methods.

NOTE
A method is considered unique as long as there is variation in the

method name, parameter data types, or number of parameters.

Method overloading is a type of operational polymorphism. Poly-

morphism occurs when the same logical operation takes on many

(“poly”) forms (“morphs”) because the data varies. Calling WriteLine()

and passing a format string along with some parameters is implemented

differently than calling WriteLine() and specifying an integer. How-

ever, logically, to the caller, the method takes care of writing the data,

and it is somewhat irrelevant how the internal implementation occurs.

Listing 5.19 provides an example, and Output 5.10 shows the results.

Listing 5.19: Counting the Lines within *.cs Files Using Overloading

using System.IO;

public static class LineCounter
{
 public static void Main(string[] args)
 {
 int totalLineCount;

 if (args.Length > 1)
 {
 totalLineCount =
 DirectoryCountLines(args[0], args[1]);
 }
 if (args.Length > 0)
 {
 totalLineCount = DirectoryCountLines(args[0]);
 }
 else
 {
 totalLineCount = DirectoryCountLines();
 }

 System.Console.WriteLine(totalLineCount);
 }

Michaelis_Book.indb 218Michaelis_Book.indb 218 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Method Overloading 219

 static int DirectoryCountLines()
 {
 return DirectoryCountLines(
 Directory.GetCurrentDirectory());
 }

 static int DirectoryCountLines(string directory)
 {
 return DirectoryCountLines(directory, "*.cs");
 }

 static int DirectoryCountLines(
 string directory, string extension)
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, extension))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

 private static int CountLines(string file)
 {
 int lineCount = 0;
 string line;
 FileStream stream =
 new FileStream(file, FileMode.Open);5

 StreamReader reader = new StreamReader(stream);
 line = reader.ReadLine();
 while(line != null)
 {
 if (line.Trim() != "")
 {
 lineCount++;
 }
 line = reader.ReadLine();
 }

 5. This code could be improved with a using statement, a construct that we have avoided

because it has not yet been introduced.

Michaelis_Book.indb 219Michaelis_Book.indb 219 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 220 Chapter 5: Methods and Parameters

 reader.Close(); // Automatically closes the stream
 return lineCount;
 }
}

Output 5.10

>LineCounter.exe .\ *.cs
28

The effect of method overloading is to provide optional ways to

call the method. As demonstrated inside Main(), you can call the

DirectoryCountLines() method with or without passing the directory

to search and the file extension.

Not ice that the parameterless implementat ion of

DirectoryCountLines() was changed to call the single-parameter version

(int DirectoryCountLines (string directory)). This is a common pat-

tern when implementing overloaded methods. The idea is that developers

implement only the core logic in one method, and all the other overloaded

methods will call that single method. If the core implementation changes,

it needs to be modified in only one location rather than within each imple-

mentation. This pattern is especially prevalent when using method over-

loading to enable optional parameters that do not have values determined at

compile time, so they cannot be specified using optional parameters.

NOTE
Placing the core functionality into a single method that all other over-

loading methods invoke means that you can make changes in imple-

mentation in just the core method, which the other methods will

automatically take advantage of.

Optional Parameters
Starting with C# 4.0, the language designers added support for optional

parameters. By allowing the association of a parameter with a constant

value as part of the method declaration, it is possible to call a method

without passing an argument for every parameter of the method (see

Listing 5.20).

Begin 4.0

Michaelis_Book.indb 220Michaelis_Book.indb 220 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Optional Parameters 221

Listing 5.20: Methods with Optional Parameters

using System.IO;

public static class LineCounter
{
 public static void Main(string[] args)
 {
 int totalLineCount;

 if (args.Length > 1)
 {
 totalLineCount =
 DirectoryCountLines(args[0], args[1]);
 }
 if (args.Length > 0)
 {
 totalLineCount = DirectoryCountLines(args[0]);
 }
 else
 {
 totalLineCount = DirectoryCountLines();
 }

 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines()
 {
 // ...
 }

/*
 static int DirectoryCountLines(string directory)
 { ... }
*/

 static int DirectoryCountLines(
 string directory, string extension = "*.cs")
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, extension))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

4.0

Michaelis_Book.indb 221Michaelis_Book.indb 221 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 222 Chapter 5: Methods and Parameters

 private static int CountLines(string file)
 {
 // ...
 }
}

In Listing 5.20, the DirectoryCountLines() method declaration with

a single parameter has been removed (commented out), but the call from

Main() (specifying one parameter) remains. When no extension parameter

is specified in the call, the value assigned to extension within the declara-

tion (*.cs in this case) is used. This allows the calling code to not specify

a value if desired, and it eliminates the additional overload that would be

required in C# 3.0 and earlier. Note that optional parameters must appear

after all required parameters (those that don’t have default values). Also,

the fact that the default value needs to be a constant, compile-time–resolved

value is fairly restrictive. You cannot, for example, declare a method like

DirectoryCountLines(
 string directory = Environment.CurrentDirectory,
 string extension = "*.cs")

because Environment.CurrentDirectory is not a constant. In contrast,

because "*.cs" is a constant, C# does allow it for the default value of an

optional parameter.

Guidelines
DO provide good defaults for all parameters where possible.
DO provide simple method overloads that have a small number of
required parameters.
CONSIDER organizing overloads from the simplest to the most
complex.

A second method call feature made available in C# 4.0 is the use of named

arguments. With named arguments, it is possible for the caller to explicitly

identify the name of the parameter to be assigned a value rather than relying

solely on parameter and argument order to correlate them (see Listing 5.21).

Listing 5.21: Specifying Parameters by Name

class Program
{

4.0

Michaelis_Book.indb 222Michaelis_Book.indb 222 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Optional Parameters 223

 static void Main()
 {
 DisplayGreeting(
 firstName: "Inigo", lastName: "Montoya");
 }

 public static void DisplayGreeting(
 string firstName,
 string middleName = default(string),
 string lastName = default(string))
 {

 // ...

 }
}

In Listing 5.21, the call to DisplayGreeting() from within Main()

assigns a value to a parameter by name. Of the two optional parameters

(middleName and lastName), only lastName is given as an argument.

For cases where a method has lots of parameters and many of them are

optional (a common occurrence when accessing Microsoft COM librar-

ies), using the named argument syntax is certainly a convenience. How-

ever, along with the convenience comes an impact on the flexibility of the

method interface. In the past, parameter names could be changed with-

out causing C# code that invokes the method to no longer compile. With

the addition of named parameters, the parameter name becomes part

of the interface because changing the name would cause code that uses the

named parameter to no longer compile.

Guidelines
DO treat parameter names as part of the API, and avoid changing the
names if version compatibility between APIs is important.

For many experienced C# developers, this is a surprising restriction.

However, the restriction has been imposed as part of the Common Lan-

guage Specification ever since .NET 1.0. Moreover, Visual Basic has always

supported calling methods with named arguments. Therefore, library

developers should already be following the practice of not changing

parameter names to successfully interoperate with other .NET languages

4.0

Michaelis_Book.indb 223Michaelis_Book.indb 223 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 224 Chapter 5: Methods and Parameters

from version to version. In essence, C# 4.0 now imposes the same restric-

tion on changing parameter names that many other .NET languages

already require.

Given the combination of method overloading, optional parameters,

and named parameters, resolving which method to call becomes less obvi-

ous. A call is applicable (compatible) with a method if all parameters have

exactly one corresponding argument (either by name or by position) that is

type compatible, unless the parameter is optional (or is a parameter array).

Although this restricts the possible number of methods that will be called,

it doesn’t identify a unique method. To further distinguish which specific

method will be called, the compiler uses only explicitly identified param-

eters in the caller, ignoring all optional parameters that were not specified

at the caller. Therefore, if two methods are applicable because one of them

has an optional parameter, the compiler will resolve to the method without

the optional parameter.

A D V A N C E D T O P I C

Method Resolution
When the compiler must choose which of several applicable methods is the

best one for a particular call, the one with the most specific parameter types

is chosen. Assuming there are two applicable methods, each requiring an

implicit conversion from an argument to a parameter type, the method

whose parameter type is the more derived type will be used.

For example, a method that takes a double parameter will be chosen

over a method that takes an object parameter if the caller passes an argu-

ment of type int. This is because double is more specific than object.

There are objects that are not doubles, but there are no doubles that are not

objects, so double must be more specific.

If more than one method is applicable and no unique best method can

be determined, the compiler will issue an error indicating that the call is

ambiguous.

For example, given the following methods:

static void Method(object thing){}
static void Method(double thing){}
static void Method(long thing){}
static void Method(int thing){}

End 4.0

Michaelis_Book.indb 224Michaelis_Book.indb 224 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 225

a call of the form Method(42) will resolve as Method(int thing) because

that is an exact match from the argument type to the parameter type. Were

that method to be removed, overload resolution would choose the long

version, because long is more specific than either double or object.

The C# specification includes additional rules governing implicit con-

version between byte, ushort, uint, ulong, and the other numeric types.

In general, though, it is better to use a cast to make the intended target

method more recognizable.

Basic Error Handling with Exceptions
This section examines how to handle error reporting via a mechanism

known as exception handling.

With exception handling, a method is able to pass information about an

error to a calling method without using a return value or explicitly provid-

ing any parameters to do so. Listing 5.22 contains a slight modification to

Listing 1.16, the HeyYou program from Chapter 1. Instead of requesting the

last name of the user, it prompts for the user’s age.

Listing 5.22: Converting a string to an int

using System;

class ExceptionHandling
{
 static void Main()
 {
 string firstName;
 string ageText;
 int age;

 Console.WriteLine("Hey you!");

 Console.Write("Enter your first name: ");
 firstName = System.Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();
 age = int.Parse(ageText);

 Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
 }
}

Michaelis_Book.indb 225Michaelis_Book.indb 225 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 226 Chapter 5: Methods and Parameters

Output 5.11 shows the results of Listing 5.22.

Output 5.11

Hey you!
Enter your first name: InigoInigo
Enter your age: 4242
Hi Inigo! You are 504 months old.

The return value from System.Console.ReadLine() is stored in a

variable called ageText and is then passed to a method with the int data

type, called Parse(). This method is responsible for taking a string value

that represents a number and converting it to an int type.

B E G I N N E R T O P I C

42 as a String versus 42 as an Integer
C# requires that every non-null value have a well-defined type associated

with it. Therefore, not only the data value but also the type associated with

the data is important. A string value of 42, therefore, is distinctly different

from an integer value of 42. The string is composed of the two characters 4

and 2, whereas the int is the number 42.

Given the converted string, the final System.Console.WriteLine()

statement will print the age in months by multiplying the age value by 12.

But what happens if the user does not enter a valid integer string?

For example, what happens if the user enters “forty-two”? The Parse()

method cannot handle such a conversion. It expects the user to enter a

string that contains only digits. If the Parse() method is sent an invalid

value, it needs some way to report this fact back to the caller.

Trapping Errors
To indicate to the calling method that the parameter is invalid,

int.Parse() will throw an exception. Throwing an exception halts fur-

ther execution in the current control flow and jumps into the first code

block within the call stack that handles the exception.

Since you have not yet provided any such handling, the program

reports the exception to the user as an unhandled exception. Assuming

there is no registered debugger on the system, the error will appear on the

console with a message such as that shown in Output 5.12.

Michaelis_Book.indb 226Michaelis_Book.indb 226 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 227

Output 5.12

Hey you!
Enter your first name: InigoInigo
Enter your age: forty-two forty-two

Unhandled Exception: System.FormatException: Input string was
 not in a correct format.
 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)
 at ExceptionHandling.Main()

Obviously, such an error is not particularly helpful. To fix this, it is nec-

essary to provide a mechanism that handles the error, perhaps reporting a

more meaningful error message back to the user.

This process is known as catching an exception. The syntax is demon-

strated in Listing 5.23, and the output appears in Output 5.13.

Listing 5.23: Catching an Exception

using System;

class ExceptionHandling
{
 static int Main()
 {
 string firstName;
 string ageText;
 int age;
 int result = 0;

 Console.Write("Enter your first name: ");
 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();

 try
 {
 age = int.Parse(ageText);
 Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
 }
 catch (FormatException)
 {
 Console.WriteLine(
 $"The age entered, { ageText }, is not valid.");
 result = 1;
 }

Michaelis_Book.indb 227Michaelis_Book.indb 227 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 228 Chapter 5: Methods and Parameters

 catch(Exception exception)
 {
 Console.WriteLine(
 $"Unexpected error: { exception.Message }");
 result = 1;
 }
 finally
 {
 Console.WriteLine($"Goodbye { firstName }");
 }

 return result;
 }
}

Output 5.13

Enter your first name: InigoInigo
Enter your age: forty-twoforty-two
The age entered, forty-two, is not valid.
Goodbye Inigo

To begin, surround the code that could potentially throw an exception

(age = int.Parse()) with a try block. This block begins with the try

keyword. It indicates to the compiler that the developer is aware of the

possibility that the code within the block might throw an exception, and if

it does, one of the catch blocks will attempt to handle the exception.

One or more catch blocks (or the finally block) must appear immedi-

ately following a try block. The catch block header (see the Advanced Topic

titled “General Catch” later in this chapter) optionally allows you to specify

the data type of the exception, and as long as the data type matches the excep-

tion type, the catch block will execute. If, however, there is no appropriate

catch block, the exception will fall through and go unhandled as though there

were no exception handling. The resultant control flow appears in Figure 5.1.

For example, assume the user enters “forty-two” for the age in the pre-

vious example. In this case, int.Parse() will throw an exception of type

System.FormatException, and control will jump to the set of catch blocks.

(System.FormatException indicates that the string was not of the correct

format to be parsed appropriately.) Since the first catch block matches the

type of exception that int.Parse() threw, the code inside this block will

execute. If a statement within the try block threw a different exception,

Michaelis_Book.indb 228Michaelis_Book.indb 228 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 229

the second catch block would execute because all exceptions are of type

System.Exception.

If there were no System.FormatException catch block, the System
.Exception catch block would execute even though int.Parse throws a

System.Console.Write ("Enter your first name: ");
 firstName = System.Console.ReadLine ();

System.Console.Write ("Enter your age: ");
 ageText = System.Console.ReadLine ();

Try Block:
 age = int.Parse (ageText);
 System.Console.WriteLine (
 "Hi {0}! You are {1} months old.",
 firstName, age*12);

FormatException Catch Block:
 System.Console.WriteLine (
 "The age entered \"{0}\" is not valid .",
 ageText);
 result = 1;

Exception Catch Block:
 System.Console.WriteLine (
 "Unexpected error: {0}",
 exception.Message);
 result = 1;

Finally Block:
 System.Console.WriteLine (
 "Goodbye {0}",
 firstName);

FormatException
exception thrown?

Exception
exception thrown?

Yes

Yes

No

No

Start

Finish

return result;

Figure 5.1: Exception-Handling Control Flow

Michaelis_Book.indb 229Michaelis_Book.indb 229 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 230 Chapter 5: Methods and Parameters

System.FormatException. This is because a System.FormatException

is also of type System.Exception. (System.FormatException is a more

specific implementation of the generic exception, System.Exception.)

The order in which you handle exceptions is significant. Catch blocks

must appear from most specific to least specific. The System.Exception data

type is least specific, so it appears last. System.FormatException appears

first because it is the most specific exception that Listing 5.23 handles.

Regardless of whether control leaves the try block normally or because

the code in the try block throws an exception, the finally block of code

will execute after control leaves the try-protected region. The purpose of

the finally block is to provide a location to place code that will execute

regardless of how the try/catch blocks exit—with or without an exception.

Finally blocks are useful for cleaning up resources regardless of whether

an exception is thrown. In fact, it is possible to have a try block with a

finally block and no catch block. The finally block executes regardless of

whether the try block throws an exception or whether a catch block is even

written to handle the exception. Listing 5.24 demonstrates the try/finally

block, and Output 5.14 shows the results.

Listing 5.24: Finally Block without a Catch Block

using System;

class ExceptionHandling
{
 static int Main()
 {
 string firstName;
 string ageText;
 int age;
 int result = 0;

 Console.Write("Enter your first name: ");
 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();

 try
 {
 age = int.Parse(ageText);
 Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
 }

Michaelis_Book.indb 230Michaelis_Book.indb 230 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 231

 finally
 {
 Console.WriteLine($"Goodbye { firstName }");
 }

 return result;
 }
}

Output 5.14

Enter your first name: InigoInigo
Enter your age: forty-two forty-two

Unhandled Exception: System.FormatException: Input string was not in a
correct format.
 at System.Number.StringToNumber(String str, NumberStyles options,
NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
 at System.Number.ParseInt32(String s, NumberStyles style,
NumberFormatInfo info)
 at ExceptionHandling.Main()
Goodbye Inigo

The attentive reader will have noticed something interesting here: The

runtime first reported the unhandled exception and then ran the finally

block. What explains this unusual behavior?

First, the behavior is legal because when an exception is unhandled, the

behavior of the runtime is implementation defined; any behavior is legal!

The runtime chooses this particular behavior because it knows before it

chooses to run the finally block that the exception will be unhandled; the

runtime has already examined all of the activation frames on the call stack

and determined that none of them is associated with a catch block that

matches the thrown exception.

As soon as the runtime determines that the exception will be unhan-

dled, it checks whether a debugger is installed on the machine, because

you might be the software developer who is analyzing this failure. If a

 debugger is present, it offers the user the chance to attach the debugger to

the process before the finally block runs. If there is no debugger installed

or if the user declines to debug the problem, the default behavior is to

print the unhandled exception to the console and then see if there are any

finally blocks that could run. Due to the “implementation-defined” nature

of the situation, the runtime is not required to run finally blocks in this

situation; an implementation may choose to do so or not.

Michaelis_Book.indb 231Michaelis_Book.indb 231 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 232 Chapter 5: Methods and Parameters

Guidelines
AVOID explicitly throwing exceptions from finally blocks. (Implicitly
thrown exceptions resulting from method calls are acceptable.)
DO favor try/finally and avoid using try/catch for cleanup code.
DO throw exceptions that describe which exceptional circumstance
occurred, and if possible, how to prevent it.

A D V A N C E D T O P I C

Exception Class Inheritance
Starting in C# 2.0, all objects thrown as exceptions derive from System
.Exception. (Objects thrown from other languages that do not

derive from System.Exception are automatically “wrapped” by an

object that does.) Therefore, they can be handled by the catch(System
.Exception exception) block. It is preferable, however, to

include a catch block that is specific to the most derived type (e.g.,

System.FormatException), because then it is possible to get the most

information about an exception and handle it less generically. In so doing,

the catch statement that uses the most derived type is able to handle the

exception type specifically, accessing data related to the exception thrown

and avoiding conditional logic to determine what type of exception

occurred.

This is why C# enforces the rule that catch blocks appear from most

derived to least derived. For example, a catch statement that catches System
.Exception cannot appear before a statement that catches System
.FormatException because System.FormatException derives from

System.Exception.

A method could throw many exception types. Table 5.2 lists some of

the more common ones within the framework.

Table 5.2: Common Exception Types

Exception Type Description

System.Exception The “base” exception from which all
other exceptions derive.

Michaelis_Book.indb 232Michaelis_Book.indb 232 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 233

Exception Type Description

System.ArgumentException Indicates that one of the arguments
passed into the method is invalid.

System.ArgumentNullException Indicates that a particular argument
is null and that this is not a valid
value for that parameter.

System.ApplicationException To be avoided. The original idea was
that you might want to have one kind
of handling for system exceptions and
another for application exceptions,
which, although plausible, doesn’t
actually work well in the real world.

System.FormatException Indicates that the string format is not
valid for conversion.

System.IndexOutOfRangeException Indicates that an attempt was made
to access an array or other collection
element that does not exist.

System.InvalidCastException Indicates that an attempt to convert
from one data type to another was
not a valid conversion.

System.InvalidOperationException Indicates that an unexpected sce-
nario has occurred such that the
application is no longer in a valid
state of operation.

System.NotImplementedException Indicates that although the method
signature exists, it has not been fully
implemented.

System.NullReferenceException Thrown when code tries to find the
object referred to by a reference that
is null.

System.ArithmeticException Indicates an invalid math operation,
not including divide by zero.

System.ArrayTypeMismatchException Occurs when attempting to store an
element of the wrong type into an
array.

System.StackOverflowException Indicates an unexpectedly deep
recursion.

Table 5.2: Common Exception Types (continued)

Michaelis_Book.indb 233Michaelis_Book.indb 233 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 234 Chapter 5: Methods and Parameters

A D V A N C E D T O P I C

General Catch
It is possible to specify a catch block that takes no parameters, as shown in

Listing 5.25.

Listing 5.25: General Catch Blocks

...
try
{
 age = int.Parse(ageText);
 System.Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
}
catch (System.FormatException exception)
{
 System.Console.WriteLine(
 $"The age entered ,{ ageText }, is not valid.");
 result = 1;
}
catch(System.Exception exception)
{
 System.Console.WriteLine(
 $"Unexpected error: { exception.Message }");
 result = 1;
}
catch
{
 System.Console.WriteLine("Unexpected error!");
 result = 1;
}
finally
{
 System.Console.WriteLine($"Goodbye { firstName }");
}
...

A catch block with no data type, called a general catch block, is equiva-

lent to specifying a catch block that takes an object data type—for instance,

catch(object exception){...}. Because all classes ultimately derive

from object, a catch block with no data type must appear last.

General catch blocks are rarely used because there is no way to capture

any information about the exception. In addition, C# doesn’t support the

ability to throw an exception of type object. (Only libraries written in

languages such as C++ allow exceptions of any type.)

Michaelis_Book.indb 234Michaelis_Book.indb 234 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 235

The behavior starting in C# 2.0 varies slightly from the earlier C#

behavior. In C# 2.0, if a language allows throwing non-System.Exceptions,

the object of the thrown exception will be wrapped in a System
.Runtime.CompilerServices.RuntimeWrappedException that does

derive from System.Exception. Therefore, all exceptions, whether

derived from System.Exception or not, will propagate into C# assemblies

as if they were derived from System.Exception.

The result is that System.Exception catch blocks will catch all excep-

tions not caught by earlier blocks, and a general catch block, following a

System.Exception catch block, will never be invoked. Consequently,

following a System.Exception catch block with a general catch block in

C# 2.0 or later will result in a compiler warning indicating that the general

catch block will never execute.

Guidelines
AVOID general catch blocks and replace them with a catch of
System.ExceptionSystem.Exception.
AVOID catching exceptions for which the appropriate action is
unknown. It is better to let an exception go unhandled than to handle
it incorrectly.
AVOID catching and logging an exception before rethrowing it.
Instead, allow the exception to escape until it can be handled
appropriately.

Reporting Errors Using a throw Statement
C# allows developers to throw exceptions from their code, as demonstrated

in Listing 5.26 and Output 5.15.

Listing 5.26: Throwing an Exception

using System;
public class ThrowingExceptions
{
 public static void Main()
 {
 try
 {
 Console.WriteLine("Begin executing");

Begin 2.0

End 2.0

Michaelis_Book.indb 235Michaelis_Book.indb 235 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 236 Chapter 5: Methods and Parameters

 Console.WriteLine("Throw exception");
 throw new Exception("Arbitrary exception");
 Console.WriteLine("End executing");
 }
 catch(FormatException exception)
 {
 Console.WriteLine(
 "A FormateException was thrown");
 }
 catch(Exception exception)
 {
 Console.WriteLine(
 $"Unexpected error: { exception.Message }");
 }
 catch
 {
 Console.WriteLine("Unexpected error!");
 }

 Console.WriteLine(
 "Shutting down...");
 }
}

Output 5.15

Begin executing
Throw exception...
Unexpected error: Arbitrary exception
Shutting down...

As the arrows in Listing 5.26 depict, throwing an exception causes

execution to jump from where the exception is thrown into the first catch

block within the stack that is compatible with the thrown exception type.6

In this case, the second catch block handles the exception and writes out

an error message. In Listing 5.26, there is no finally block, so execution

falls through to the System.Console.WriteLine() statement following

the try/catch block.

To throw an exception, it is necessary to have an instance of an excep-

tion. Listing 5.26 creates an instance using the keyword new followed

by the type of the exception. Most exception types allow a message to be

generated as part of throwing the exception, so that when the exception

occurs, the message can be retrieved.

 6. Technically it could be caught by a compatible catch filter as well.

Michaelis_Book.indb 236Michaelis_Book.indb 236 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Basic Error Handling with Exceptions 237

Sometimes a catch block will trap an exception but be unable to handle

it appropriately or fully. In these circumstances, a catch block can rethrow

the exception using the throw statement without specifying any exception,

as shown in Listing 5.27.

Listing 5.27: Rethrowing an Exception

...
 catch(Exception exception)
 {
 Console.WriteLine(
 $@"Rethrowing unexpected error: {
 exception.Message }");
 throw;
 }
...

In Listing 5.27, the throw statement is “empty” rather than specifying

that the exception referred to by the exception variable is to be thrown.

This illustrates a subtle difference: throw; preserves the call stack informa-

tion in the exception, whereas throw exception; replaces that information

with the current call stack information. For debugging purposes, it is usu-

ally better to know the original call stack.

Guidelines
DO prefer using an empty throw when catching and rethrowing an
exception so as to preserve the call stack.
DO report execution failures by throwing exceptions rather than
returning error codes.
DO NOT have public members that return exceptions as return values
or an outout parameter. Throw exceptions to indicate errors; do not use
them as return values to indicate errors.

Avoid Using Exception Handling to Deal with Expected Situations
Developers should make an effort to avoid throwing exceptions for

expected conditions or normal control flow. For example, developers

should not expect users to enter valid text when specifying their age.7

 7. In general, developers should expect their users to perform unexpected actions; in turn,

they should code defensively to handle “stupid user tricks.”

Michaelis_Book.indb 237Michaelis_Book.indb 237 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 238 Chapter 5: Methods and Parameters

Therefore, instead of relying on an exception to validate data entered by

the user, developers should provide a means of checking the data before

attempting the conversion. (Better yet, they should prevent the user from

entering invalid data in the first place.) Exceptions are designed specifi-

cally for tracking exceptional, unexpected, and potentially fatal situations.

Using them for an unintended purpose such as expected situations will

cause your code to be hard to read, understand, and maintain.

Additionally, like most languages, C# incurs a slight performance hit

when throwing an exception—taking microseconds compared to the

nanoseconds most operations take. This delay is generally not noticeable in

human time—except when the exception goes unhandled. For example, when

Listing 5.22 is executed and the user enters an invalid age, the exception is

unhandled and there is a noticeable delay while the runtime searches the

environment to see whether there is a debugger to load. Fortunately, slow

performance when a program is shutting down isn’t generally a factor to

be concerned with.

Guidelines
DO NOT use exceptions for handling normal, expected conditions; use
them for exceptional, unexpected conditions.

A D V A N C E D T O P I C

Numeric Conversion with TryParse()
One of the problems with the Parse() method is that the only way to

determine whether the conversion will be successful is to attempt the

cast and then catch the exception if it doesn’t work. Because throwing

an exception is a relatively expensive operation, it is better to attempt

the conversion without exception handling. In the first release of C#, the

only data type that enabled this behavior was a double method called

double.TryParse(). However, this method is included with all numeric

primitive types starting with the Microsoft .NET Framework 2.0. It requires

the use of the out keyword because the return from the TryParse() func-

tion is a bool rather than the converted value. Listing 5.28 is a code snippet

that demonstrates the conversion using int.TryParse().

Begin 2.0

Michaelis_Book.indb 238Michaelis_Book.indb 238 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

 Summary 239

Listing 5.28: Conversion Using int.TryParse()

if (int.TryParse(ageText, out int age))
{
 Console.WriteLine(
 $"Hi { firstName }! "
 + $"You are { age*12 } months old.");
}
else
{
 Console.WriteLine(
 $"The age entered, { ageText }, is not valid.");
}

With the Microsoft .NET Framework 4, a TryParse() method was also

added to enum types.

With the TryParse() method, it is no longer necessary to include a

try/catch block simply for the purpose of handling the string-to-numeric

conversion.

SUMMARY

This chapter discussed the details of declaring and calling methods,

including the use of the keywords out and ref to pass and return vari-

ables rather than their values. In addition to method declaration, this chap-

ter introduced exception handling.

A method is a fundamental construct that is a key to writing readable

code. Instead of writing large methods with lots of statements, you should

use methods to create “paragraphs” of roughly 10 or fewer statements

within your code. The process of breaking large functions into smaller

pieces is one of the ways you can refactor your code to make it more read-

able and maintainable.

The next chapter considers the class construct and describes how it

encapsulates methods (behavior) and fields (data) into a single unit.

End 2.0

Michaelis_Book.indb 239Michaelis_Book.indb 239 4/12/18 1:12 PM4/12/18 1:12 PM

From Essential C# 7.0 by Mark Michaelis. Copyright 2018 Pearson Education, Inc. ISBN: 978-15-0930358-8.

